全息存储技术到底是何方神圣。为什么在市场上掀起兴风作浪?下面我们就详细的了解下什么叫做全息存储技术。在今天的计算机系统中,磁存储和光存储是我们记录数据的两大主要手段,近两年这两大领域都有较大的发展,如垂直记录技术成为硬盘发展的新方向,蓝光DVD和HD DVD让HDTV离我们越来越近。
不过,容量更高、速度更快、可靠性更强是我们永远的目标,现有磁存储和光存储技术始终无法克服机械结构所带来的容量性能提升缓慢、可靠性不佳的缺陷。最近,一种名为全息存储的新技术引起了人们的广泛关注,据说采用这种技术后,一块方糖大小的立方体可以存储高达1TB的数据。全息存储技术真的有这么神奇吗
什么是全息存储技术
全息存储(Holographic Memory)是利用全息照相的原理来实现数据的记录。这一概念是Dennis Gabor在1984年为提高电子显微镜的分辨率而提出的(注:全息表示物体发出光波的全部信息,例如振幅、强度、相位等)。全息存储技术的最大优点就是超高密度,例如,我们可以在一个糖块大小的特殊立方体中存储超过1TB(1TB=1024GB)大小的数据,这相当于1500张CD光盘的数据总和。不仅如此,全息存储技术还具有极大的提升潜力,只要控制芯片具有足够强的数据处理能力,全息存储技术甚至可以提供高达1000TB的容量。相比之下,目前硬盘的最大容量才750GB,这个容量只相当于全息存储技术的“立方体糖块”的一个小碎片所提供的存储能力。
全息存储技术中照相技术原理
我们知道,传统照相技术是利用光照引起感光乳胶发生化学变化的原理来记录影像,感光乳胶的化学变化强度和入射光波的强度一一对应。换句话说,我们在拍照时只是记录了图像的光强信息,我们所得到的照片不管成像多么清晰、多么逼真,景象都是平面(二维)的。而全息照相就突破了这种限制,它利用光的干涉原理和特殊的感光材料,不仅可以记录被摄物体发射或透射光波强度的信息,还能将光波的相位精确地保存下来,从而获得真实的立体图像。
用于全息照相的拍摄设备并不是普通相机,而是一台激光器。该激光器产生的激光束被分光镜一分为二,其中一束直接照射到被拍摄的物体(形成的反射光称为“物光”),另一束直接照射到感光胶片上(称为“参考光”),物光和参考光最终会在感光胶片中相遇,这两种光的波长相同,只是相位有差异,因此它们在感光胶片上相遇时会产生干涉现象。
根据物理学知识可知,当两束相干光叠加时,就会产生相干图纹,这时我们将记录介质放在相干图纹中,就可以记录下相干信息(注意:此时记录的是两束光的共同信息)。虽然参考光没含有任何信息,但它的作用非常关键,因为有了这束参考光,我们就可以在介质上记录下完整的光束信息,包括相位信息。
接下来我们再来看看怎样将刚才记录的信息还原。相对于记录来说,还原要简单一些,我们只须借助一束参考光从一定角度照射全息存储技术中的照片,眼前就会出现非常逼真的立体场景。而且参考光所照射的角度不同,呈现在我们面前的立体图形侧面场景也将不同。注意,此处的参考光是与记录时完全相同的一束光。